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Single Step Barrier 

(Other names: Potential Step, Barrier Penetration) 

 

Consider 

𝑉(𝑥) = {
0          𝑥 < 0
𝑉0          𝑥 > 0

 

 

Case 𝐸 < 𝑉0 

Classically 

𝐸 =
𝑝2

2𝑚
+ 𝑉0 

𝑝2 = 2𝑚(𝐸 − 𝑉0) 

Since 𝐸 < 𝑉0 thus 𝑝2 < 0 which is not possible. Thus the particle cannot e found in region 𝑥 > 0 

according to classical mechanics. The particle would be reflected back at x=0 because it does not have 

sufficient energy to climb the barrier. On the other hand if > 𝑉0 , then the particle would not be 

reflected; it would keep moving towards the right with reduced energy.  

 

Quantum mechanical consideration 

Since V is independent of time 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝜓(𝑡) 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖
𝐸𝑡

ℏ  

Substituting in  

iℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

−ℏ2

2𝑚

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 + 𝑉(𝑥)𝜓(𝑥, 𝑡) 

iℏ (
−iE

ℏ
) 𝜓(𝑥) =

−ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2 + 𝑉(𝑥)𝜓(𝑥) 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
2𝑚

ℏ2 (𝐸 − 𝑉(𝑥))𝜓(𝑥) = 0 
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Known as time independent Schrödinger equation 

Substituting 𝑉(𝑥) from above 

𝜕2𝜓(𝑥)

𝜕𝑥2
+

2𝑚𝐸

ℏ2
𝜓(𝑥) = 0                           𝑓𝑜𝑟 𝑥 < 0 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
2𝑚

ℏ2
(𝐸 − 𝑉0)𝜓(𝑥) = 0                    𝑓𝑜𝑟 𝑥 > 0 

Let 

𝑘1
2 =

2𝑚𝐸

ℏ2 𝑘2
2 =  

2𝑚

ℏ2
(𝐸 − 𝑉0) 

𝜕2𝜓(𝑥)

𝜕𝑥2 + 𝑘1
2𝜓(𝑥) = 0                           𝑓𝑜𝑟 𝑥 < 0 

𝜕2𝜓(𝑥)

𝜕𝑥2 + 𝑘2
2𝜓(𝑥) = 0                    𝑓𝑜𝑟 𝑥 > 0 

 

𝜓(𝑥) = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥             𝑓𝑜𝑟 𝑥 < 0 

𝜓(𝑥) = 𝐶𝑒𝑖𝑘2𝑥 + 𝐷𝑒−𝑖𝑘2𝑥             𝑓𝑜𝑟 𝑥 > 0 

The term 𝐴𝑒𝑖𝑘1𝑥 represents the wave travelling in the positive x-direction in the first region and the 

second term represents the reflected part of the incident wave travelling in the negative x-direction in 

the first region.  

Similarly, the term 𝐶𝑒𝑖𝑘1𝑥 represents the wave travelling in the positive x-direction in the second region 

and the second term represents the reflected part of the transmitted wave travelling in the negative x-

direction in the second region. Since, discontinuity occurs only at x=0 in the region II and after which 

there occurs no discontinuity in this region. This mean that the reflection will not take place in this 

region, i.e. D=0. 

 

𝜓(𝑥) = {
𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥             𝑓𝑜𝑟 𝑥 < 0

𝐶𝑒𝑖𝑘2𝑥             𝑓𝑜𝑟 𝑥 > 0
 

Solving for A , B ,and  C  

lim
𝑥→0−

𝜓(𝑥) = lim
𝑥→0+

𝜓(𝑥) 

𝜓(0−) = 𝐴 + 𝐵 = 𝜓(0+) = 𝐶 
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𝐴 + 𝐵 = 𝐶 

Again 

𝑑𝜓(𝑥)

𝑑𝑥
|
𝑥=0

 must be continuous 

𝑑𝜓(𝑥)

𝑑𝑥
|

𝑥=0−

= 𝐴𝑖𝑘1 − 𝐵𝑖𝑘1 

𝑑𝜓(𝑥)

𝑑𝑥
|

𝑥=0+

= 𝐶𝑖𝑘2 

𝐴𝑖𝑘1 − 𝐵𝑖𝑘1 = 𝐶𝑖𝑘2 

Solving 

𝐴 + 𝐵 = 𝐶 

𝐴 − 𝐵 = 𝐶
𝑘2

𝑘1
 

𝐵 = (
𝑘1 − 𝑘2

𝑘1 + 𝑘2
) 𝐴 

𝐶 = (
2𝑘1

𝑘1 + 𝑘2
) 𝐴 

Substituting back in 

𝜓(𝑥) = 𝐴 (𝑒𝑖𝑘1𝑥 + (
𝑘1 − 𝑘2

𝑘1 + 𝑘2
) 𝑒−𝑖𝑘1𝑥)              𝑓𝑜𝑟 𝑥 < 0 

Incident wave + reflected wave 

𝜓(𝑥) = 𝐴 (
2𝑘1

𝑘1 + 𝑘2
) 𝑒−𝑖𝑘2𝑥             𝑓𝑜𝑟 𝑥 > 0 

Transmitted wave 

Probability of finding the particle in region 𝑥 > 0 

 

 

The probability current density 

Reflectance, Reflectivity or reflection coefficient 



B A S  –  1 0 7  L e c t u r e 1 2   4 

 
 

Version 3.5 
 

For certain applications, for example the potential step problem, it is useful to introduce a quantity 

called the probability current density. It is defined as 

𝐽(𝑥, 𝑡) =
ℏ

2𝑖𝑚
(𝜓

𝜕𝜓∗

𝜕𝑥
− 𝜓∗

𝜕𝜓

𝜕𝑥
) = 𝑅𝑒 [𝜓∗

ℏ

𝑖𝑚

𝜕𝜓

𝜕𝑥
] 

The above quantity can be thought of as product of velocity and probability density. 

Reflectance |𝑅| =
𝐽𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
 

Transmittance |𝑇| =
𝐽𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑

𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
 

𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 =
ℏ𝑘1

𝑚
|𝐴|2, 𝐽𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 =

ℏ𝑘1

𝑚
|𝐵|2, 𝐽𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 =

ℏ𝑘2

𝑚
|𝐶|2 

𝑅 = |
𝐵

𝐴
|

2

= |
𝑘1 − 𝑘2

𝑘1 + 𝑘2
|

2

 

𝑇 = |
𝐶

𝐴
|

2

=
4𝑘1𝑘2

(𝑘1 + 𝑘2)2 

Substituting the values of 𝑘1 and 𝑘2, for𝐸 > 𝑉0  and simplifying the above become 

𝑅 = (
1 − (1 −

𝑉0

𝐸
)

1

2

1 + (1 −
𝑉0

𝐸
)

1

2

)

2

 

𝑇 =
4 (1 −

𝑉0

𝐸
)

1

2

(1 + (1 −
𝑉0

𝐸
)

1

2
)

2 

Note that R and T depend only on the ratio 
𝑉0

𝐸
. Note also that 𝑅 + 𝑇 = 1 as it must be, because the 

probability is conserved.  

 

 

 

 

 

Case 𝑬 < 𝑉𝟎 
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Let us define a positive real number 𝛼 such that 𝛼 = 𝑖𝑘2 

Thus the  second differential equation will become: 

𝜕2𝜓(𝑥)

𝜕𝑥2 − 𝛼2𝜓(𝑥) = 0               𝑓𝑜𝑟 𝑥 > 0 

and the solution will be 

𝜓(𝑥) = 𝐶𝑒−𝛼𝑥 + 𝐷𝑒𝛼𝑥             𝑓𝑜𝑟 𝑥 > 0 

The wave function should not become  as 𝑥 → ∞, thus we must choose D=0. 

𝜓(𝑥) = 𝐶𝑒−𝛼𝑥             𝑓𝑜𝑟 𝑥 > 0 

 

Note that he wave function is non zero in the classically forbidden region II, although it decreases rapidly 

as x increases. 

Thus, there is a finite, though small, probability of finding a particle in region II. This phenomenon is 

called barrier penetration or tunnel effect.  

Here  

𝑅 = |
𝑘1 − 𝑖𝛼

𝑘1 + 𝑖𝛼
|

2

= 1 

Since the eigenfunction is now real in region II, the transmitted probability current is zero. 

𝑇 = 0 

 

Thus the probability of finding the particle in the region 𝑥 > 0 will be  

𝜓(𝑥)𝜓∗(𝑥)=𝐴2 𝑘1
2

𝑘1
2+𝛼2 𝑒−2𝛼𝑥 

The finite probability of finding the particle in classically forbidden region is known as tunnel effect. 

In the limit of large energies 𝐸 ≫ 𝑉0, we have 𝑘1 ≈ 𝑘2and the classical result 𝑅 = 1,𝑇 = 0is recovered. 

 

Although, there is a finite probability of finding the particle in the classically-forbidden region, there is 

no permanent penetration.  It means that there is a continuous reflection in the second region until all 

incident particle are returned to first region.  
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The transmission of particles even when the particle energy is less than the barrier height is known as 

barrier penetration or tunnel effect. It is a unique quantum phenomenon and illustrates a fundamental 

difference between classical and quantum physics. Tunnel effect in barriers of finite width is used to 

explain various phenomena in atomic, nuclear and solid state physics.  

For E > V0, the wavefunctions are given below. The reason for the larger amplitude in the second region 

is that the particle spends more time there because of the slow speed. The wavelength is also larger 

because the kinetic  energy is lower.  

 

For E < Vo, the wave function is exponentially deceasing but nonzero is region  II.  

The variation of reflection and transmission coefficients as a function of E/Vo is given below. 

 

 

A physical example of the above problem can be thought as the neutron which is trying to escape 

nucleus.  Here we assume that the energy of the incident particle is greater than the step barrier height. 

The wavelength of the particle suddenly changes from first region to second region.  

𝜆1 =
ℎ

√2𝑚𝐸
  to 𝜆2 =

ℎ

√2𝑚(𝐸−𝑉0)
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Hence, a small part of the wave associated with the particle is reflected due to this change in 

wavelength and the rest part is transmitted.  

 

Momentum Operator, Energy Operator, Expectation Value 

 

𝑝̂ = −ℏ
𝜕

𝜕𝑥
 

𝐸̂ = 𝑖ℏ
𝜕

𝜕𝑡
 

∫ 𝑥
∞

−∞

|𝜓(𝑥)|2𝑑𝑥 

 

Hamiltonian 

An operator to be applied to total energy of the system 

𝐻̂ =  −
ℏ2

2𝑚
∇2 + 𝑉 

Thus for a free particle not bounded by any potential 

 

𝐻̂ =  −
ℏ2

2𝑚

𝜕2

𝜕𝑥2 

For constant potential well 

𝐻̂ =  −
ℏ2

2𝑚

𝜕2

𝜕𝑥2 + 𝑉0 

For a simple harmonic oscillator 

𝐻̂ =  −
ℏ2

2𝑚

𝜕2

𝜕𝑥2 +
𝑚𝜔2𝑥2

2
 

For a hydrogen atom electron 

𝐻̂ =  −
ℏ2

2𝑚

𝜕2

𝜕𝑟2
+

1

4𝜋𝜀0

𝑚𝑒2

𝑟2
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The above operator can be applied to  𝜓(𝑥), the wave function. The Equation will look like 

𝐻̂𝜓(𝑥) = 𝐸𝜓(𝑥) 

Which is same as an eigenvalue equation. The Energy values of the above equations are eigenvalues. 

Tutorial Questions 

1. The wave function of a particle is 𝜓(𝑥) = 𝐴 𝑐𝑜𝑠2𝑥 for the interval –
𝜋

2
 to 

𝜋

2
. Find the value of A. 

2. A particle limited to the x-axis has a the wave function 𝜓(𝑥) = 𝑎𝑥 between x=0 and x=1. 

𝜓(𝑥) = 0 𝑒lsewhere. Find the (a) the probability that the particle can be found between x=0.45 

and the expectation value < 𝑥 >of the particle’s position. 

3. Explain analytically how quantum mechanical tunneling depends on the width of the potential 

barrier. 

4. Calculate the transmittance and reflectance for a quantum mechanical particle striking a 

potential barrier V0. Hence find T+R. 

5. Discuss the significance of Zero point energy in Quantum mechanics. 

 

 


