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de Broglie hypothesis 

The dual nature of light possessing both wave and particle properties is illustrated by combining Plank’s 
relation for energy of a photon 𝐸 = ℎ𝜈 with Einstein mass energy relation 𝐸 = 𝑚𝑐2 

ℎ𝜈 = 𝑚𝑐2 

𝑚𝑐 =
ℎ𝜈

𝑐
 

𝑝 =
ℎ𝜈

𝑐
=

ℎ

𝜆
 

The wavelength associated with a particle of mass 𝑚 having momentum 𝑝 can be written as 

𝜆 =
ℎ

𝑚𝑣
=

ℎ

√2𝑚𝐸
 

Note that these are matter waves and not electromagnetic waves. They cannot be observed. The are 
probability waves.  

The momentum of a particle p and wavelength 𝜆 of the wave associated with it are connected by the de 
Broglie relation 

𝑝 =
ℎ

𝜆
 

The corresponding relations like 𝑝 =
ℎ

𝜆
= ℏk, 𝐸 = ℎ𝜈 can be derived 

Wave function 

 

The wave function associated by a particle can be thought of a monochromatic wave 𝜓(𝑥, 𝑡) =

𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡).  

Properties of a wave function 

A wave function must be 

finite everywhere 
single valued 
continuous and have continuous derivatives 

Expectation value of any function 𝑓(𝑥) = 〈𝑓(𝑥)〉 = ∫ 𝜓(𝑥) 𝑓(𝑥)𝜓∗(𝑥)𝑑𝑥If 𝜓(𝑥) is normalized. 

Time dependent Schrödinger equation 



B A S  –  1 0 7  L e c t u r e 1 1  | 2 

 

Version 4.0 
 

Consider a particle with total energy ‘E’ and momentum ‘p’ moving in x direction.  

𝜓(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

𝜓(𝑥, 𝑡) = 𝐴𝑒
𝑖(

2𝜋ℎ

𝜆ℎ
𝑥−

2𝜋𝜈ℎ

ℎ
𝑡)

 

𝜓(𝑥, 𝑡) = 𝐴𝑒
𝑖

ℏ
(𝑝𝑥−𝐸𝑡) 

Consider the equation 

𝐸 =
𝑝2

2𝑚
+ 𝑉 

Multiplying 𝜓(𝑥, 𝑡) from both the sides 

𝐸𝜓(𝑥, 𝑡) =
𝑝2

2𝑚
𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) 

Consider 𝜓(𝑥, 𝑡) = 𝐴𝜓(𝑥, 𝑡) = 𝐴𝑒
𝑖

ℏ
(𝑝𝑥−𝐸𝑡) 

𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

−𝑖E

ℏ
𝜓(𝑥, 𝑡) 

𝜕𝜓(𝑥, 𝑡)

𝜕𝑥
=

𝑖𝑝

ℏ
𝜓(𝑥, 𝑡) 

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 =
−𝑝2

ℏ2 𝜓(𝑥, 𝑡) 

 

Thus  

𝐸𝜓(𝑥, 𝑡) =
𝑝2

2𝑚
𝜓(𝑥, 𝑡) + 𝑉𝜓(𝑥, 𝑡)becomes 

iℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

−ℏ2

2𝑚

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 + 𝑉𝜓(𝑥, 𝑡) 

known as time dependent Schrödinger equation 

In three dimensions it can be written as  

iℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

−ℏ2

2𝑚
∇2𝜓(𝒓, 𝑡) + 𝑉𝜓(𝒓, 𝑡) 
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The operator 
−ℏ2

2𝑚
∇2 + 𝑉 is called Himiltonian and is represented by H. Thus the above equation can be 

written as  
𝐻𝜓(𝒓, 𝑡) = 𝐸𝜓(𝒓, 𝑡) 

 

 

Particle in box  

(Also known as Infinite potential well or infinite square well) 

It describes a free particle moving in a small space with impenetrable barriers. 

𝑉(𝑥) = {
0          0 < 𝑥 < 𝐿

∞          𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

Since 𝑉(𝑥)is independent of time the Schrödinger equation can be written in the time independent 
form  

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝜓(𝑡) 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒−𝑖
𝐸𝑡

ℏ  

Substituting in  

iℏ
𝜕𝜓(𝑥, 𝑡)

𝜕𝑡
=

−ℏ2

2𝑚

𝜕2𝜓(𝑥, 𝑡)

𝜕𝑥2 + 𝑉(𝑥)𝜓(𝑥, 𝑡) 

iℏ (
−iE

ℏ
) 𝜓(𝑥) =

−ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2 + 𝑉(𝑥)𝜓(𝑥) 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
2𝑚

ℏ2 (𝐸 − 𝑉(𝑥))𝜓(𝑥) = 0 

Known as time independent Schrödinger equation 

Substituting 𝑉(𝑥) from above 

For0 < 𝑥 < 𝐿 

𝜕2𝜓(𝑥)

𝜕𝑥2 +
2𝑚𝐸

ℏ2 𝜓(𝑥) = 0 



B A S  –  1 0 7  L e c t u r e 1 1  | 4 

 

Version 4.0 
 

𝜓(𝑥) = 𝐴 sin (√
2𝑚𝐸

ℏ2 𝑥) + 𝐵 cos (√
2𝑚𝐸

ℏ2 𝑥) 

Boundary condition 

𝜓(𝑥) equal zero at x = 0 and x = L. The particle is unlikely to be found at a location with a high potential, 
thus the probability of finding the particle, |𝜓(𝑥)|2, must be small in these regions and decreases with 

increasing potential. For the case of an infinite potential, |𝜓(𝑥)|2must be infinitesimally small or 0, thus 
𝜓(𝑥) must also be zero in this region. 𝜓 0 =0, 𝐿 =0 

𝜓(0) = 𝐴 sin (√
2𝑚𝐸

ℏ2 0) + 𝐵 cos (√
2𝑚𝐸

ℏ2 0) = 0 

𝜓(0) = 𝐴. 0 + 𝐵. 1 = 0 

Thus 𝐵=0 

𝜓(𝐿) = 𝐴 sin (√
2𝑚𝐸

ℏ2
𝐿) + 0 cos (√

2𝑚𝐸

ℏ2
𝐿) = 0 

√
2𝑚𝐸

ℏ2 𝐿 = 𝑛𝜋 

𝐸 =
𝑛2π2ℏ2

2𝑚𝐿2 =
𝑛2ℎ2

8𝑚𝐿2 

The above gives the energy eigenvalues  

( or energy levels ) of the system. This shows that the energy of the particle is quantized.  

Thus the wave function becomes  

𝜓(𝑥) = 𝐴 sin (
𝑛𝜋

𝐿
𝑥) 

Normalizing the above 

∫ 𝐴 sin (
𝑛𝜋

𝐿
𝑥) 𝐴 sin (

𝑛𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

= 1 
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∫ 𝐴2 sin2 (
𝑛𝜋

𝐿
𝑥) 𝑑𝑥

𝐿

0

= 1 

𝐴 = √
2

𝐿
 

𝜓(𝑥) = √
2

𝐿
sin (

𝑛𝜋

𝐿
𝑥) 

 

Classically, the probability of particle being found anywhere in the box is the same. However the above 
theory (known as Quantum theory) says that if the particle is in ground state it is more likely to be found 
in the middle of the box, but if it is in first excited state, this probability is zero.  

Davisson-Germer Experiment  

A beam of monoenergetic electron struck a nickel single crystal target. The detector studied the current 
of reflected electron as a function of  

a. Incident energy 
b. Emergent angle 
c. Orientation of the crystal 
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Classical theory predicts that scattered electrons will emerge in all the directions with a continuous 
variation in scattered electron intensity with angle. The dependence being even less upon energy of 
primary electrons.  

To avoid collusion of electrons with other molecules on their way towards the surface , the experiment 
was conducted in vacuum chamber. During the experiment an accident occurred and air entered the 
chamber, producing an oxide film on the nickel surface. To remove the oxide, Davisson and Germer 
heated the specimen in a high temperature oven, not knowing that this affected the formerly 
polycrystalline structure of the nickel to form large single crystal areas with crystal planes continuous 
over the width of the electron beam. 

With the new target the results were quite different. At certain angles there was a peak in the intensity 
of the scattered electron beam. This peak indicated wave behaviour for the electrons, and could be 
interpreted by the Bragg law to give values for the lattice spacing in the nickel crystal.  

 

This selective angle dependence of energy can be explained on the basis of wave theory. 

Considering the Nickel behaving as a mirror diffraction grating with each atom placed at a spacing of  

2.15Å the constructive interfere can occur for  

𝑛𝜆 = 𝑑 sin 𝜑 
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𝑑 = 2.15Å      𝜑 = 50°                𝑛 = 1 ( 𝐿𝑒𝑡)              

𝜆 = 2.15 × 10−10 sin 50° 

1.65Å       

 

Calculate 𝜆 for electron with 𝐾 = 54𝑒𝑉 

𝜆 =
ℎ

√2𝑚𝐾
= 1.66Å 

The constructive maxima are explained from above. The deBroglie hypothesis is confirmed.  
Surface diffraction is not the complete picture as many combinations of 𝜆 and 𝜑 would produce strong 
reflections and successive maxima. 

 

Heisenberg Uncertainty principle 

Single slit diffraction method 

The position and momentum of a particle cannot be determined simultaneously with highest accuracy.  

∆𝑥 ∙ ∆𝑝 ≥ ℏ 

∆𝑡 ∙ ∆𝐸 ≥ ℏ 

Consider the electron beam with momentum p incident on the slit of width∆𝑦. If ∆𝑦 is comparable to 

the wavelength of the electron beam , then the electrons will diffract according to single slit diffraction 

pattern and form a central maximum 𝑀0 and two secondary minima 𝑃1 and 𝑃2. According to diffraction 

theory the first order diffraction minima condition is 

∆𝑦 sin 𝜃 = 𝜆 

Where ∆𝑦 is the position of the electron before being diffracted which is having momentum 𝑝 only 

along x-axis. Before diffraction electron is having momentum 𝑝 only along x-axis but after diffraction 

they are having momentum along y-axis also. The component of momentum along y-axis is  

𝑝 sin 𝜃  𝑎𝑛𝑑 − 𝑝 sin 𝜃 

So the uncertainty in the momentum in y direction is  

∆𝑝𝑦 = 𝑝 sin 𝜃 − (−𝑝 sin 𝜃) = 2𝑝 sin 𝜃 = 2
ℎ

𝜆
sin 𝜃 

Thus 
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∆𝑦∆𝑝𝑦 =
𝜆

sin 𝜃
2

ℎ

𝜆
sin 𝜃 = 2ℎ ≥  ℏ 

 

 

Tutorial question 

1. Using the uncertainty principle prove that an electron does not exist inside the nucleus.  
2. What is the potential difference required to accelerate electrons to a given wavelength of 0.1 

Angstroms? 

 

∆𝑦 𝜃 

𝑃1 

𝑃2 


